Formulation and Evaluation of Monolithic Osmotic Tablets for Controlled Delivery of Nifedipine
نویسندگان
چکیده
An oral monolithic osmotically controlled delivery system for Nifedepine using asymmetric membrane technology was developed and evaluated. Unlike conventional osmotic systems, which require laser drilling, this system releases the drug in a controlled manner from asymmetric membrane coated core tablets. Asymmetric membrane is formed by dry process with phase inversion technology process using cellulose acetate as the coating material. Higher water influx of this membrane aids in delivery of Nifedepine, which is highly water insoluble with low osmotic pressure. The porous structure of the membrane was confirmed by scanning electron microscopy. Influence of different osmotic agents on drug release was evaluated. In vitro release studies showed that as concentration of osmotic agents was increased, the drug release was also enhanced. Drug release from the developed monolithic system was independent of external agitation and pH of dissolution media. Comparative in vitro release data was obtained using different types of coating membranes like controlled porosity membrane and dense coating membrane with mechanically drilled orifice. Osmotic pressure generated in the system was determined using freezing point osmometer. The osmotic pressure developed was found to be linearly proportional to time and concentration of osmotic agent.
منابع مشابه
Design and Pharmacodynamic Evaluation of Optimized Microporous Osmotic Tablets of Venlafaxine Hydrochloride
Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active agents[3]. These systems can be utilized for systemic as well as targeted delivery of drugs. The release of drugs from osmotic system is governed by various formulation factors such as the solubility and the osmotic pressure of the core components, nature of the rate controlling membrane...
متن کاملEvaluation of monolithic osmotic tablet system for nifedipine delivery in vitro and in vivo.
The aim of this study was to evaluate the monolithic osmotic tablet system (MOTS) containing a solid dispersion with the practically water-insoluble drug nifedipine in vitro and in vivo. In the drug release study in vitro, the release profiles of this system had almost zero-order kinetics. The influences of tablet formulation variables, sizes of the delivery orifice, membrane variables, and val...
متن کاملControlled-Release Low Density Effervescent Floating Matrix Tablets of Risperidone: Development, Optimization, in vitro-in vivo Evaluation in Healthy Human Volunteers and Determination of Dissolution Equivalency
The main objective of the present study was to formulate gastroretentive effervescent sustained release drug delivery systems of risperidone floating tablets with the help of Methocel® K15, Ethocel® standard 7FP premium, Eudragit ® RS100 sustained release polymers to improve its safety profile, bioavailability and patient compliance. Risperidone floating tablets were formulated by wet granulati...
متن کاملMatrix Tablets: An Effective Way for Oral Controlled Release Drug Delivery
The purpose of this review article is to characterize all of the parameters regarding the types, polymers used, and release kinetics of matrix tablets. Matrix system was the earliest oral extended release platform for medicinal use. Matrix tablets are most commonly used methods to modulate the release profile of drugs. They are much desirable and preferred for such therapy because they o...
متن کاملDevelopment and evaluation of regioselective bilayer floating tablets of Atenolol and Lovastatin for biphasic release profile
This study was performed to design bilayer regioselective floating tablets of atenolol and lovastatin to give immediate release of lovastatin and sustained release of atenolol. Bilayer floating tablets comprised two layers, i.e immediate release and controlled release layers. The immediate release layer comprised sodium starch glycollate as a super disintegrant and the sustained release layer c...
متن کامل